Linear transformations preserving sets of ranks
نویسندگان
چکیده
منابع مشابه
On Zero-Preserving Linear Transformations
For an arbitrary subset I of IR and for a function f defined on I, the number of zeros of f on I will be denoted by ZI(f) . In this paper we attempt to characterize all linear transformations T taking a linear subspace W of C(I) into functions defined on J (I, J ⊆ IR) such that ZI(f) = ZJ (Tf) for all f ∈ W .
متن کاملLinear transformations preserving log-concavity
In this paper, we prove that the linear transformation yi = i ∑ j=0 ( m+ i n+ j ) xj , i = 0, 1, 2, . . . preserves the log-concavity property. © 2002 Elsevier Science Inc. All rights reserved.
متن کاملTwo Linear Transformations Preserving Log-Concavity
In this paper we prove that the linear transformation
متن کاملNorm Preserving Extensions of Linear Transformations on Hilbert Spaces
Introduction. Let 77 be a Hubert space and let D be a closed proper subspace of 77. Let 70 be a linear contraction on D to 77. The problem of characterizing the contractions on all of 77 which extend J0 is directly related to the extension problems for unbounded transformations posed and treated by M. G. Krein [2] and R. S. Phillips [3]. In §1 of this paper we establish the following solution o...
متن کاملLinear Transformations Preserving the Strong $q$-log-convexity of Polynomials
In this paper, we give a sufficient condition for the linear transformation preserving the strong q-log-convexity. As applications, we get some linear transformations (for instance, Morgan-Voyce transformation, binomial transformation, Narayana transformations of two kinds) preserving the strong q-log-convexity. In addition, our results not only extend some known results, but also imply the str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 1983
ISSN: 0035-7596
DOI: 10.1216/rmj-1983-13-2-299